МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ, МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

ГОУ ВПО Кыргызско-Российский Славянский университет имени первого Президента Российской Федерации Б.Н. Ельцина

Количественные методы в прикладной экономике

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Математических методов и исследований операций в экономике

Учебный план

Направление 38.03.01 - РФ, 580100 - КР Экономика Профиль "Математические методы в экономике"

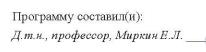
Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 5 ЗЕТ

Часов по учебному плану 180 Виды контроля в семестрах:

в том числе: экзамены 6


 аудиторные занятия
 64

 самостоятельная работа
 79,1

 экзамены
 36,8

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	6 ((3.2)			
Недель	16				
Вид занятий	УП	РΠ	УП	РΠ	
Лекции	32	32	32	32	
Практические	32	32	32	32	
Контактная работа в период теоретического обучения	0,1	0,1	0,1	0,1	
В том числе инт.	6	6	6	6	
В том числе в форме практ.подготовки	32	32	32	32	
Итого ауд.	64	64	64	64	
Контактная работа	64,1	64,1	64,1	64,1	
Сам. работа	79,1	79,1	79,1	79,1	
Часы на контроль	36,8	36,8	36,8	36,8	
Итого	180	180	180	180	

Рецензент(ы):

Д.э.н., профессор, Кыдыралиев С.К.

Рабочая программа дисциплины

Количественные методы в прикладной экономике

разработана в соответствии с ФГОС 3++:

Федеральный государственный образовательный стандарт высшего образования - бакалавриат по направлению подготовки 38.03.01 Экономика (приказ Минобрнауки России от 12.08.2020 г. № 954)

составлена на основании учебного плана:
Направление 38.03.01 - РФ, 580100 - КР Экономика
Профиль "Математические методы в экономике"
утвержденного учёным советом вуза от 28.06.2024 протокол № 11.

Рабочая программа одобрена на заседании кафедры

Математических методов и исследований операций в экономике

Протокол от 25.10.2024 г. № 4 Срок действия программы: 2024-2028 уч.г. Зав. кафедрой Миркин Е.Л.

Председатель УМС — — 2025 г.	Munerierea Fel			
2025 r.	I def			
Рабочая программа пересмот исполнения в 2025-2026 учеб Математических методов и	рена, обсуждена и одобрена бном году на заседании кафе	едры		
	Протокол от 29. С Зав. кафедрой	08 2025 r. № <u>1</u>		
	Визирование РПД для	исполнения в очередно	м учебном году	
Председатель УМС 2026 г.				
Рабочая программа пересмот исполнения в 2026-2027 учеб Математических методов и	оном году на заседании кафе	едры		
	Протокол отЗав. кафедрой	2026 г. №		
	Визирование РПД для	исполнения в очередно	м учебном году	
Председатель УМС 2027 г.				
Рабочая программа пересмот исполнения в 2027-2028 учес Математических методов и	бном году на заседании кафо	едры		
	Протокол от Зав. кафедрой	2027 г. №		
	Визирование РПД для	исполнения в очередно	ом учебном году	
Председатель УМС 2028 г.				
Рабочая программа пересмочисполнения в 2028-2029 учен Математических методов и	бном году на заседании кафо	едры		
	Протокол от	2028 г. №		

Визирование РПД для исполнения в очередном учебном году

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Формирование устойчивых практических навыков использования количественных методов для принятия решений в сложных экономических и организационных системах, а также подготовка студентов к использованию современных компьютерных средств для решения этих задач.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП							
Ци	Цикл (раздел) ООП: Б1.В.ДВ.01							
2.1	Требования к предварительной подготовке обучающегося:							
2.1.1	Алгоритмизация и программирование экономических задач							
2.1.2	Дифференциальные и разностные уравнения							
2.1.3	1.3 Экономико-математическое моделирование							
2.1.4	4 Информационные технологии в экономике							
2.1.5	Линейная алгебра							
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:							
2.2.1	1 Анализ данных							
2.2.2	Исследование операций в экономике							
2.2.3	Нейронные сети							

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)					
ПК-1: Способен системно анализировать связи между объектами и процессами в экономике и бизнесе, выявлять проблемы, сравнивать альтернативы с учетом рисков и выбирать наиболее оптимальный вариант решения					
Знать:					
Уровень 1	Уровень 1 Методы и модели анализа данных и выбора оптимальных решений.				
Уметь:					
Уровень 1	Выбирать и применять адекватные поставленной задаче методы и модели анализа данных и выбора оптимальных решений с учетом риска.				
Владеть:					
Уровень 1	Методами системного анализа данных и методами получения оптимальных решений на моделях.				

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	Количественные методы для принятия решений в сложных экономических и организационных системах
3.2	Уметь:
3.2.1	Применять методологию и методы количественного анализа для принятия решений в прикладной экономике
3.2.2	Осуществлять постановку оптимизационных задач, алгоритмизировать их в виде основных этапов решения
	Принимать эффективные решения для оптимального управления экономическими системами различной степени сложности, осуществлять прогнозирование и оптимизацию бизнеса
3.3	Владеть:
3.3.1	Программирования в среде MATLAB с возможностью ее применения для имитационного моделирования экономических систем
	Программирования и использования среды MATLAB (Toolbox Optimization) для решения задач оптимального управления экономическими и организационными системами.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
Код занятия	Наименование разделов и тем /вил занятия/	Семестр / Курс	Часов	Компетен-	Литература	Инте ракт.	Пр. полг.	Примечание	
	Раздел 1. Математическая постановка общей задачи принятия решений в экономических системах								
1.1	Классы кибернетических задач. Понятие система, модель системы /Лек/	6	4	ПК-1	Л1.4Л2.1				

1.2	T17	(1 4	THC 1	птопт	1		I
1.2	Инструментальные средства моделирования и оптимизации /Лек/	6	4	ПК-1	Л1.2 Л1.1			
1.3	Изучение среды MATLAB, как инструмента исследования и имитационного моделирования сложных систем. Изучение расширенных возможностей среды MATLAB: Пакет SIMULINK, Toolbox Symbolic Mathematics /Пр/	6	6	ПК-1	Л2.1 Э1	2	6	Групповой анализ выполненной работы
1.4	Использование среды MATLAB (Toolbox Optimization) для решения задач оптимального управления экономическими и организационными системами /Ср/	6	14	ПК-1	Л2.1 Э1			
	Раздел 2. Математические методы решения задач оптимального управления							
2.1	Математическое описание объектов управления. Статические и динамические модели в экономике. Понятие о процессах оптимального управления в экономике. Приведение дифференциальных уравнений высокого порядка к нормальной форме Коши /Лек/	6	4	ПК-1	Л1.2			
2.2	Цели и задачи управления. Математическая постановка общей задачи оптимального управления для непрерывных и дискретных процессов (классификация и типы задач). Математические методы решения задач оптимального управления (обзор) /Лек/	6	4	ПК-1	Л1.2			
2.3	Исследование имитационной модели объекта управления /Пр/	6	12	ПК-1	Л1.2	2	12	Групповой анализ выполненной работы
2.4	Возникновение экстремальных задач. Классическая изопериметрическая задача. Задача Дидоны. Возникновение экстремальных задач. Задача о брахистохроне /Ср/	6	20	ПК-1	Л1.2			Â
	Раздел 3. Методы идентификации экономических систем по результатам наблюдений							
3.1	Обзор методов идентификации статических и динамических моделей экономических систем /Лек/	6	4	ПК-1	Л1.4			
3.2	Подготовка исходных данных для идентификации математических моделей экономических систем /Пр/	6	2	ПК-1	Л1.4		2	

3.3	Идентификация статических систем методом наименьших квадратов (МНК). Рекуррентный метод МНК /Пр/	6	2	ПК-1	Л1.4	2	
3.4	Идентификация динамических систем методом наименьших квадратов (МНК). /Пр/	6	2	ПК-1	Л1.4	2	
3.5	Основная задача оптимального управления. Принцип максимума Понтрягина. Решение оптимальных задач. Простейшая задача о быстродействии. Решение оптимальных задач. Геометрические экстремальные задачи. Принцип Лагранжа для гладких задач с ограничениями типа равенств и неравенств. /Ср/	6	9		Л1.4 Л1.2Л2.1		
	Раздел 4. Метод динамического программирования Беллмана						
4.1	Метод динамического программирования. Постановка задачи оптимального управления для непрерывного и дискретного случая. Принцип оптимальности. Одномерная дискретная задача и вычислительные аспекты метода динамического программирования /Лек/	6	8	ПК-1	Л1.4 Л1.2		
4.2	Компьютерное моделирование дискретной динамической модели склада. Формирование критерия оптимальности работы склада /Пр/	6	2	ПК-1	Л1.4 Л1.2	2	
4.3	Реализация метода динамического программирования для оптимального управления складом /Пр/	6	4	ПК-1	Л1.4 Л1.2	4	
4.4	Идентификация экономических систем методом максимального правдоподобия /Ср/	6	6	ПК-1	Л1.4 Л1.2		
4.5	Пример задачи динамического программирования. Задача о найме работников. Динамические задачи управления запасами /Ср/ Раздел 5. Методы имитационного	6	6	ПК-1	Л1.4 Л1.2		
	моделирования динамических экономических систем						
5.1	Обзор численных методов решения дифференциальных и разностных уравнений /Лек/	6	4	ПК-1	Л1.3 Л1.1		

5.2	Использование типовых элементов пакета Simulink (MATLAB) для имитационного моделирования динамических систем /Лек/	6	4	ПК-1	Л1.1Л2.1			
5.3	Использование типовых элементов пакета Simulink (MATLAB) для имитационного моделирования динамических систем /Пр/	6	2	ПК-1	Л1.1Л2.1 Э1		2	
5.4	Использование пакета Simulink (MATLAB) для имитационного моделирования конкретной экономической системы /Пр/	6	4	ПК-1	Л1.1Л2.1 Э1	2	4	В форме конференции
5.5	Обзор использования динамических математических моделей в различных областях экономики /Ср/	6	16	ПК-1	Л1.3 Л1.1Л2.1			
5.6	/KpTO/	6	0,2	ПК-1				
5.7	/Экзамен/	6	36,8					

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ
5.1. Контрольные вопросы и задания
Контрольные вопросы. Приложение 1
5.2. Темы курсовых работ (проектов)
Дисциплина не предусматривает выполнение курсовой работы
5.3. Фонд оценочных средств
Задания для лабораторных и домашних работ. Приложение 2
Тесты. Приложение 3
5.4. Перечень видов оценочных средств
Виды работ и шкалы оценок. Приложение 4
Лабораторная/Домашняя работа
Тест

6	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)							
	6.1. Рекомендуемая литература							
	6.1.1. Основная литература							
	Авторы, составители	Заглавие	Издательство, год					
Л1.1	Черемных Ю. Н., Любкин А. А., РощинаЯ.А. В. Ф., Пахомов Ю. П., Оревков Б. Э., Слепак Е. Г., Белоусов А. Ю., Челноков Л. Н., Фадеева Я. А., Рощина Е. Н., Лукаш М. В., Грачева, Грачева М. В., Черемных Ю. Н., Туманова Е. А.	Количественные методы в экономических исследованиях: Учебник для студентов вузов, обучающихся по специальностям экономики и управления	Москва: ЮНИТИ-ДАНА 2017					
Л1.2	Рутта Н. А.	Методы и модели принятия оптимальных решений в экономике: Учебное пособие для бакалавров	Москва: Ай Пи Ар Медиа 2022					
Л1.3	Федосеев В.В.	Математическое моделирование в экономике и социологии труда. Методы, модели, задачи: учебное пособие для студентов вузов, обучающихся по специальностям 080104 «Экономика труда», 080116 «Математические методы в экономике»	М.: ЮНИТИ-ДАНА 2015					

	Авторы, составители	Заглавие	Издательство, год						
Л1.4	Конюховский П.	Математические методы исследования операций в	Санкт-Петербург: Питер 2000						
		экономике							
	6.1.2. Дополнительная литература								
	Авторы, составители	Заглавие	Издательство, год						
Л2.1	Плохотников К. Э.	Москва: СОЛОН-ПРЕСС 2017							
	6.2. Перечен	ь ресурсов информационно-телекоммуникационной сети	"Интернет"						
Э1	Центр Инженерных Те	хнологий и Моделирования Экспонента	exponenta.ru						
	6.3	. Перечень информационных и образовательных технолог	ий						
	6.3.1 K	омпетентностно-ориентированные образовательные техно	элогии						
6.3.1.	Традиционные образо	вательные технологии - Лекции и лабораторные работы							
6.3.1.2	6.3.1.2 Инновационные образовательные технологии - анализ в группе								
6.3.1.3 Информационные образовательные технологии									
6.3.2 Перечень информационных справочных систем и программного обеспечения									
6.3.2.	l Matlab								

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Лекции проводятся в виде компьютерных презентаций с использованием мультимедийных средств. Лабораторные занятия проводятся в компьютерном классе, оснащенном персональными компьютерами с необходимыми параметрами и с установленным профессиональным программным обеспечением. Используется Интернет для доступа к необходимым статистическим ресурсам.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Технологическая карта и вес работ. Приложение 5

Методические указания по усвоению дисциплины. Приложение 6

Контрольные вопросы по дисциплине

Количественные методы в прикладной экономике

- 1. Кибернетика как наука. Задачи кибернетики в экономике.
- 2. Задачи идентификации моделей
- 3. Задачи анализа и прогноза
- 4. Задачи управления
- 5. Структурирование кибернетических задач. Кибернетическая пирамида.
- 6. Задачи идентификации. Задачи кластеризации и классификации.
- 7. Метод К-средних.
- 8. Методы иерархической кластеризации.
- 9. Разновидности методов кластеризации.
- 10. Классификация данных. Модели классификации.
- 11. Метод наименьших квадратов. Идентификация статических систем.
- 12. Математическое описание объектов управления.
- 13. Математическое описание объектов управления. Управляемость систем.
- 14. Математическое описание объектов управления. Наблюдаемость систем.
- 15. Математическое описание объектов управления. Достижимость систем.
- 16. Метод наименьших квадратов. Идентификация динамических систем.
- 17. Статические и динамические модели в экономике.
- 18. Понятие о процессах оптимального управления в экономике.
- 19. Приведение дифференциальных уравнений высокого порядка к нормальной форме Коши.
- 20. Моделирования и прогнозирование динамических систем.
- 21. Цели и задачи управления.
- 22. Математическая постановка общей задачи оптимального управления для непрерывных процессов (классификация и типы задач).
- 23. Математическая постановка общей задачи оптимального управления для дискретных процессов (классификация и типы задач).
- 24. Математические методы решения задач оптимального управления (обзор).
- 25. Метод динамического программирования. Постановка задачи оптимального управления для непрерывного случая.
- 26. Метод динамического программирования. Постановка задачи оптимального управления для дискретного случая.
- 27. Метод динамического программирования. Принцип оптимальности.
- 28. Метод динамического программирования. Одномерная дискретная задача и вычислительные аспекты метода динамического программирования.
- 29. Метод динамического программирования в непрерывной задаче. Уравнение Беллмана.
- 30. Метод динамического программирования. Задача динамического управления складом.
- 31. Метод динамического программирования. Задача о замене оборудования.

Задания для лабораторных работ/домашних работ по дисциплине

Количественные методы в прикладной экономике

Задание 1 к лабораторной работе Изучение среды MATLAB, как инструмента исследования и имитационного моделирования сложных систем. Изучение расширенных возможностей среды MATLAB: Пакет SIMULINK, Toolbox Symbolic Mathematics.

Необходимо:

- изучить операторы условия и цикла пакета MATLAB
- изучить операторы ввода/вывода пакета MATLAB
- изучить операторы пакета MATLAB предназначенные для работы с 2-D, 3-D графикой
- изучить работу с подпрограммами-функциями пакета MATLAB
- изучить работу с Toolbox Symbolic Mathematics
- изучить работу пакета SIMULINK

Задание 2 к лабораторной работе Исследование имитационной модели 1 объекта управления.

Задана математическая модель объекта управления в виде дифференциального уравнения (2-го, или 3-го порядка).

Необходимо:

- привести дифференциальное уравнение к нормальной форме Коши;
- построить имитационную схему моделирования данного объекта; получить переходные процессы в системе для различных входных сигналов.
 - 1. Задание 3 к лабораторной работе Метод наименьших квадратов.

Идентификация статических систем.

Задана модель статической системы с точностью до параметров (структура модели (регрессионный вектор) задаётся индивидуально).

Задана таблица наблюдений за вход/выходной последовательностью системы.

Требуется по результатам наблюдения за системой восстановить параметры системы, используя критерий МНК.

Модель и результаты наблюдений привязать к конкретной экономической системе.

2. Задание 4 к лабораторной работе Метод наименьших квадратов.

Идентификация динамических систем.

Задана модель динамической системы с точностью до параметров (структура модели (регрессионный вектор) задаётся индивидуально).

Задана таблица наблюдений за вход/выходной последовательностью системы.

Требуется по результатам наблюдения за системой восстановить параметры системы, используя критерий МНК.

Модель и результаты наблюдений привязать к конкретной экономической системе.

Задание 5 к лабораторной работе Исследование имитационной модели 2 объекта управления.

Задана математическая модель объекта управления в виде дифференциального уравнения (4-го порядка).

Необходимо:

- привести дифференциальное уравнение к нормальной форме Коши;
- построить имитационную схему моделирования данного объекта;

получить переходные процессы в системе для различных входных сигналов.

Тестовые вопросы по дисциплине

Количественные методы в прикладной экономике

Задача управления заключается в том, чтобы:

- 1. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем Т заранее неизвестен.
- 2. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем T заранее известен
- 3. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем (T-t0) минимален
- 4. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель.

Оптимальной траекторией в ТОУ называют:

- 1. линию, соединяющую начальное состояние объекта с заданным состоянием
- 2. оптимальное управление объекта
- 3. решение объекта управления, соответствующее оптимальному управлению
- 4. кратчайшую линию, соединяющую начальное состояние объекта с заданным состоянием

Задача оптимального управления заключается в том, чтобы:

- 1. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает экстремального значения.
- 2. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает минимального значения.
- 3. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает максимального значения.
- 4. в области допустимых управлений найти такое управление, на котором показатель качества достигает приемлемого значения.

Управляемость-это:

- 1. свойство конкретного управления по отношению к объекту
- 2. зависит от выбранного пространства состояний
- 3. является обязательным свойством всех объектов
- 4. внутреннее свойство объекта и определяется его физической сущностью

Какое из нижеследующих утверждений верно:

- 1. Область достижимых значений при неограниченном росте Т превращается в область управляемости
- 2. Область управляемости при неограниченном росте Т превращается в область достижимых значений
- 3. Область достижимых значений и область управляемости не связаны.
- 4. Область управляемости и область достижимых значений это одно и то же.

В разомкнутой стратегии управления:

- 1. оптимальное управление ищется как функция от времени
- 2. существует механизм обратной связи управление как функция состояния системы
- 3. функция управления постоянна

Нормальная форма Коши представляет собой:

- 1. систему из п дифференциальных уравнений первого порядка, каждое из которых разрешено относительно производной
- 2. систему из п дифференциальных уравнений, с заданными начальными условиями
- 3. систему из п линейных дифференциальных уравнений, с заданными начальными условиями
- 4. систему из п дифференциальных уравнений первого порядка

Переменные состояния представляют собой:

- 1. это выход каждого из управлений
- 2. это переменные, подбираемые для перевода задачи в нормальную форму Коши
- 3. это возможные варианты управлений

```
4. это объективные (физические) переменные, выступающие вспомогательными.
Существуют ли универсальные методы по переводу модели в нормальную форму Коши?
   1. нет
   2. ∂a
Выберите из предложенных возможный вариант первой строки матрицы Фробениуса ля
системы 4-го порядка:
   1. 01000
   2. 10000
   3. 00000
   4. 00001
Какова размерность матрицы А в нормальной форме Коши для системы порядка п:
   1. nx1
   2. nxm
   3. 1xn
   4. nxn
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5:
for i=1:6
 s=s-1;
end
   1. s=0
   2. s=-1
   3. s=2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=-1;
for i=1:-1:-1
 s=2*s-1:
end
   1. s=-15
   2. s=-14
   3. s=14
Определите результат счета следующего фрагмента программы (script Malab) s=?
s=-1;
for i=1:-1:-1
  s=2*s-1;
  if i==0
    break
  end
end
   1. s=-15
   2. s=-7
   3. s=-14
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=-1;
while s < 0
  s=s-1:
  ifs < =-1.5
```

```
break
  end
end
   1. s=2
   2. s=1
   3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5:
while s < 0
  s=s-1;
  if s<3.5
    break
  end
end
   1. s=5
   2. s=-1
   3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5:
while s>0
  s=s-1;
  if s<3.5
    break
  end
end
   1. s=-3
   2. s=3
   3. s=4
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
while s>0
  s=s-1;
  if s<3.5
    s=s-2;
  end
end
   1. s=-1
   2. s=3
   3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
for i=1:6
  s=s-1;
  if(s < 3)&(i > 3)
    break
```

```
end
end
    1. s=1
   2. s=2
   3. s=-2
Oпределите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
for i=1:6
 s=s-1;
  if (s<3)|(i>3)
    break
  end
end
    1. s=1
   2. s=2
   3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
for i=1:6
  s=s-1;
  if(s < 3)|(i > 1)
    break
  end
end
   1. s=2
   2. s=1
   3. s=3
А - матрица |2 3; 2 5|, B=A.^3. Тогда B(2,1)=:
    1. 16
   2. 27
   3. 8
   4. 9
A - матрица |2 3; 4 5|, B=A.^2. Тогда B(1,2)=:
   1. 16
   2. 9
   3. 25
Чтобы в Matlab получить матрицу b -обратную матрице a:
    1. b=inv(a)
    2. b=a'
   3. b=niv(a)
   4. b=int(a)
А - матрица |2 3; 4 5|, В=А.^2. Тогда В(2,1)=:
   1. 16
   2. 28
   3. 18
Блок State-Space в Simulink предназначен для решения:
```

- 1. систем дифференциальных уравнений первого порядка
- 2. систем дифференциальных уравнений нормальной формы Коши
- 3. дифференциальных уравнений порядка выше первого
- 4. систем уравнений

С помощью какой функции в MatLab осуществляется построение двумерных графиков:

- 1. Plot
- 2. Mesh
- 3. Plot3

Как происходит поэлементное умножение двух матриц А и В:

- 1. A.* B
- 2. A*B
- 3. A*. B

Дана матрица А. Как вырезать элементы первой строки?:

- 1. A(1,:)
- 2. A(1,1)
- 3. A(:,1)

Какой знак разделяет строки при вводе матрицы в системе MatLab:

- 1. ;
- 2. :
- 3. '
- 4. !

Какую из ниже перечисленных задач можно отнести к задаче вариационного исчисления?

- 1. задача о линии наискорейшего ската
- 2. задача о нахождении функции, удовлетворяющей ДУ порядка выше первого
- 3. задача о нахождении интеграла
- 4. задача о дифференцировании в оптимальных точках траектории

Φ ункционал — это:

- 1. неопределенный интеграл с неизвестной функцией
- 2. среднее арифметическое значений функции на концах интервала
- 3. число, характеризующее функцию на интервале
- 4. это знак интеграла

Условия Лежандра позволяют ответить на вопрос:

- 1. максимум или минимум достигается на некоторой экстремали
- 2. на какой экстремали достигается экстремум
- 3. где находится излом экстремали
- 4. какие значения имеют постоянные параметры экстремали для поставленной задачи

Условия трансверсальности используются:

- 1. Когда необходимо найти экстремаль, при условии, что начало, и конец решения лежат на некоторых заданных кривых.
- 2. В задаче Больца
- 3. Когда концы траектории не закреплены
- 4. Когда необходимо найти экстремаль, пересекающую заданную заранее кривую

Задача Больца – это:

- 1. это задача минимизации функционала при известном ограничении на экстремаль
- 2. это задача нахождения экстремали при неизвестных граничных условиях
- 3. это задача нахождения экстремали при заданных ограничениях на функционал
- 4. это задача нахождения минимального расстояния между кривыми, которые известны заранее

Необходимые условия в задаче Больца – это:

- 1. уравнения Гамильтона
- 2. система дифференциальных уравнений и условие Эйлера
- 3. условия трансверсальности
- 4. условия Лежандра

Решая уравнение Эйлера, можно получить:

1. множество кривых, среди которых следует искать решение задачи

- 2. множество кривых, среди которых не следует искать решение задачи
- 3. одну кривую, которая является решением
- 4. кривую, которая должна быть исключена из области допустимых решений

Вариационная задача является задачей с подвижными концами траектории, если:

- 1. a, b, x(a), x(b) заранее известны
- 2. левый конец траектории известен, правый неизвестен
- 3. правый конец траектории известен, левый неизвестен
- 4. a, b, x(a), x(b) заранее неизвестны

В случае, когда требуется найти оптимальное решение вариационной задачи, если начало и конец решения лежат на заданных кривых, по скольким параметрам необходимо минимизировать функционал

- 1. по 3 параметрам
- 2. по 2 параметрам
- 3. по 4 параметрам
- 4. по 1 параметру

Задача Больца переходит в задачу Лагранжа, если

- 1. терминальный член =0
- 2. терминальный член >0
- 3. терминальный член <0
- 4. терминальный член =1

В основе задач динамического программирования лежит:

- 1. принцип конечности итераций
- 2. принцип оптимальности
- 3. принцип независимости управления
- 4. принцип наискорейшего достижения цели

Какое из ниже перечисленных утверждений верно:

- 1. любой оставшийся участок оптимальной траектории сам по себе является оптимальной траекторией
- 2. любая оптимальная траектория переводит ОУ из начального состояния в конечное состояние за минимальный отрезок времени
- 3. оптимальная траектория может рассматриваться в качестве оптимальной только в случае известного начального и конечного времени
- 4. участок оптимальной траектории между точками а и b есть экстремаль для функционала, минимизирующего расстояние между этими точками

Верно ли утверждение: принцип динамического программирования применим как к непрерывным, так и к дискретным задачам:

- 1. нет
- 2. да

Какой принцип заложен в схему решения задачи оптимального управления методом динамического программирования?

- 1. Принцип упорядоченности
- 2. Принцип трансверсальности
- 3. Принцип оптимальности

Какой стратегии придерживается бегун на длинную дистанцию (стайер)?

- 1. Оптимальной стратегии расходования сил
- 2. Бег с максимальной скоростью
- 3. Равномерной стратегией расходования сил

Каким методом можно решить задачу оптимального управления с ограничениями неравенствами на состояния и управления?

- 1. Методами вариационного исчисления
- 2. Методом динамического программирования

Методом динамического программирования решается задача оптимизации

- 1. В прямом времени, начиная с начала траектории
- 2. В обратном времени, начиная с конца траектории

Какой принцип заложен в схему решения задачи оптимального управления методом динамического программирования?

- 1. Принцип упорядоченности
- 2. Принцип оптимальности
- 3. Принцип трансверсальности

Метод динамического программирования используется для решения:

- 1. Безусловной задачи оптимизации
- 2. Условной задачи оптимизации

В качестве критерия оптимизации в задаче оптимального управления, решаемой методом динамического программирования, используется:

- 1. Функционал
- 2. Функция

ТЕСТОВОЕ ЗАДАНИЕ

Задача управления заключается в том, чтобы:

- 1. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем Т заранее неизвестен.
- 2. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем T заранее известен
- 3. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель на конечном интервале времени (t0,T), причем (T-t0) минимален
- 4. в области допустимых управлений подобрать такое управление, при котором будет достигнута цель.

Оптимальной траекторией в ТОУ называют:

- 1. линию, соединяющую начальное состояние объекта с заданным состоянием
- 2. оптимальное управление объекта
- 3. решение объекта управления, соответствующее оптимальному управлению
- 4. кратчайшую линию, соединяющую начальное состояние объекта с заданным состоянием

Задача оптимального управления заключается в том, чтобы:

- 1. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает экстремального значения.
- 2. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает минимального значения.
- 3. в области допустимых управлений найти такое управление, на котором показатель качества при заданном внешнем воздействии достигает максимального значения.
- 4. в области допустимых управлений найти такое управление, на котором показатель качества достигает приемлемого значения.

Управляемость-это:

- 1. свойство конкретного управления по отношению к объекту
- 2. зависит от выбранного пространства состояний
- 3. является обязательным свойством всех объектов
- 4. внутреннее свойство объекта и определяется его физической сущностью

Какое из нижеследующих утверждений верно:

- 1. Область достижимых значений при неограниченном росте Т превращается в область управляемости
- 2. Область управляемости при неограниченном росте Т превращается в область достижимых значений
- 3. Область достижимых значений и область управляемости не связаны.
- 4. Область управляемости и область достижимых значений это одно и то же.

В разомкнутой стратегии управления:

- 1. оптимальное управление ищется как функция от времени
- 2. существует механизм обратной связи управление как функция состояния системы
- 3. функция управления постоянна

Нормальная форма Коши представляет собой:

- 1. систему из п дифференциальных уравнений первого порядка, каждое из которых разрешено относительно производной
- 2. систему из п дифференциальных уравнений, с заданными начальными условиями
- 3. систему из n линейных дифференциальных уравнений, с заданными начальными условиями
- 4. систему из п дифференциальных уравнений первого порядка

Переменные состояния представляют собой:

- 1. это выход каждого из управлений
- 2. это переменные, подбираемые для перевода задачи в нормальную форму Коши
- 3. это возможные варианты управлений
- 4. это объективные (физические) переменные, выступающие вспомогательными.

Существуют ли универсальные методы по переводу модели в нормальную форму Коши?

- 1) нет
- 2) да

Выберите из предложенных возможный вариант первой строки матрицы Фробениуса ля системы 4-го порядка:

- 1. 0 1 0 0 0
- 2. 10000
- 3. 00000
- 4. 00001

Какова размерность матрицы А в нормальной форме Коши для системы порядка п:

- 1. nx1
- 2. nxm
- 3. 1xn
- 4. nxn

Определите результат счета следующего фрагмента программы (script Malaba) s=?

```
s=5;
for i=1:6
s=s-1;
end
1. s=0
```

- 1. S-U
- 2. s=-1
- 3. s=2

Определите результат счета следующего фрагмента программы (script Malaba) s=?

```
s=-1;
for i=1:-1:-1
s=2*s-1;
end
1. s=-15
2. s=-14
```

3. s=14

Определите результат счета следующего фрагмента программы (script Malaba) s=?

```
s=-1;
for i=1:-1:-1
s=2*s-1;
if i==0
```

```
break
  end
end
1. s=-15
2. s=-7
3. s=-14
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=-1:
while s < 0
 s=s-1;
  ifs < = -1.5
    break
  end
end
1. s=2
2. s=1
3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5:
while s<0
 S=S-1;
  if s<3.5
    break
  end
end
1. s=5
2. s=-1
3. s=-2
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
while s>0
 s=s-1;
  if s<3.5
    break
  end
end
1. s=-3
2. s=3
3. s=4
Определите результат счета следующего фрагмента программы (script Malaba) s=?
s=5;
while s>0
 s=s-1;
  if s<3.5
    s=s-2;
```

```
end
   end
    1. s=-1
   2. s=3
   3. s=-2
   Определите результат счета следующего фрагмента программы (script Malaba) s=?
  s=5;
  for i=1:6
    s=s-1;
     if (s<3)&(i>3)
       break
     end
   end
   1. s=1
   2. s=2
   3. s=-2
   Определите результат счета следующего фрагмента программы (script Malaba) s=?
  s=5;
  for i=1:6
     s=s-1;
     if(s < 3)|(i > 3)
       break
     end
   end
   1. s=1
   2. s=2
   3. s=-2
   Определите результат счета следующего фрагмента программы (script Malaba) s=?
  s=5;
  for i=1:6
     s=s-1;
     if(s < 3)|(i > 1)
       break
     end
   end
    1. s=2
   2. s=1
   3. s=3
А - матрица |2 3; 2 5|, В=А.^3. Тогда В(2,1)=:
   1. 16
   2. 27
   3. 8
   4. 9
А - матрица |2 3; 4 5|, В=А.^2. Тогда В(1,2)=:
```

- 2. 9
- 3. 25

Чтобы в Matlab получить матрицу b -обратную матрице a:

- 1. b=inv(a)
- 2. b=a'
- 3. b=niv(a)
- 4. b=int(a)

A - матрица |2 3; 4 5|, B=A.^2. Тогда $B(\overline{2,1})=:$

- 1. 16
- 2. 28
- 3. 18
- 4. 9

Блок State-Space в Simulink предназначен для решения:

- 1. систем дифференциальных уравнений первого порядка
- 2. систем дифференциальных уравнений нормальной формы Коши
- 3. дифференциальных уравнений порядка выше первого
- 4. систем уравнений

С помощью какой функции в MatLab осуществляется построение двумерных графиков:

- 1. Plot
- 2. Mesh
- 3. Plot3

Как происходит поэлементное умножение двух матриц А и В:

- 1. A.* B
- 2. A*B
- 3. A*. B

Дана матрица А. Как вырезать элементы первой строки?:

- 1. A(1,:)
- 2. A(1,1)
- 3. A(:,1)

Какой знак разделяет строки при вводе матрицы в системе MatLab:

- 1. ;
- 2. :
- 3. '
- 4. !

Какую из ниже перечисленных задач можно отнести к задаче вариационного исчисления?

- 1. задача о линии наискорейшего ската
- 2. задача о нахождении функции, удовлетворяющей ДУ порядка выше первого
- 3. задача о нахождении интеграла
- 4. задача о дифференцировании в оптимальных точках траектории

Φ ункционал – это:

- 1. неопределенный интеграл с неизвестной функцией
- 2. среднее арифметическое значений функции на концах интервала
- 3. число, характеризующее функцию на интервале
- 4. это знак интеграла

Условия Лежандра позволяют ответить на вопрос:

- 1. максимум или минимум достигается на некоторой экстремали
- 2. на какой экстремали достигается экстремум
- 3. где находится излом экстремали
- 4. какие значения имеют постоянные параметры экстремали для поставленной задачи

Условия трансверсальности используются:

- 1. Когда необходимо найти экстремаль, при условии, что начало, и конец решения лежат на некоторых заданных кривых.
- 2. В задаче Больца
- 3. Когда концы траектории не закреплены

4. Когда необходимо найти экстремаль, пересекающую заданную заранее кривую

Задача Больца – это:

- 1. это задача минимизации функционала при известном ограничении на экстремаль
- 2. это задача нахождения экстремали при неизвестных граничных условиях
- 3. это задача нахождения экстремали при заданных ограничениях на функционал
- 4. это задача нахождения минимального расстояния между кривыми, которые известны заранее

Необходимые условия в задаче Больца – это:

- 1. уравнения Гамильтона
- 2. система дифференциальных уравнений и условие Эйлера
- 3. условия трансверсальности
- 4. условия Лежандра

Решая уравнение Эйлера, можно получить:

- 1. множество кривых, среди которых следует искать решение задачи
- 2. множество кривых, среди которых не следует искать решение задачи
- 3. одну кривую, которая является решением
- 4. кривую, которая должна быть исключена из области допустимых решений

Вариационная задача является задачей с подвижными концами траектории, если:

- 1. a, b, x(a), x(b) заранее известны
- 2. левый конец траектории известен, правый неизвестен
- 3. правый конец траектории известен, левый неизвестен
- 4. a, b, x(a), x(b) заранее неизвестны

В случае, когда требуется найти оптимальное решение вариационной задачи, если начало и конец решения лежат на заданных кривых, по скольким параметрам необходимо минимизировать функционал

- 1. по 3 параметрам
- 2. по 2 параметрам
- 3. по 4 параметрам
- 4. по 1 параметру

Задача Больца переходит в задачу Лагранжа, если

- 1. терминальный член =0
- 2. терминальный член >0
- 3. терминальный член <0
- 4. терминальный член =1

В основе задач динамического программирования лежит:

- 1. принцип конечности итераций
- 2. принцип оптимальности
- 3. принцип независимости управления
- 4. принцип наискорейшего достижения цели

Какое из ниже перечисленных утверждений верно:

- 1. любой оставшийся участок оптимальной траектории сам по себе является оптимальной траекторией
- 2. любая оптимальная траектория переводит ОУ из начального состояния в конечное состояние за минимальный отрезок времени
- 3. оптимальная траектория может рассматриваться в качестве оптимальной только в случае известного начального и конечного времени
- 4. участок оптимальной траектории между точками а и b есть экстремаль для функционала, минимизирующего расстояние между этими точками

Верно ли утверждение: принцип динамического программирования применим как к непрерывным, так и к дискретным задачам:

- 1. нет
- 2. да

Какой принцип заложен в схему решения задачи оптимального управления методом

динамического программирования?

- 1. Принцип упорядоченности
- 2. Принцип трансверсальности
- 3. Принцип оптимальности

Какой стратегии придерживается бегун на длинную дистанцию (стайер)?

- 1. Оптимальной стратегии расходования сил
- 2. Бег с максимальной скоростью
- 3. Равномерной стратегией расходования сил

Виды работ и шкалы оценок по дисциплине Количественные методы в прикладной экономике

Лабораторная/Домашняя работа

Лабораторная работа — один из видов практических работ, реализуемых кафедрой ЭММ.

Целью лабораторной работы является углубление и закрепление теоретических знаний через развитие навыков обработки данных для решения поставленной задачи в присутствии и под руководством преподавателя.

Лабораторная работа служит для оценки освоения общепрофессиональных и профессиональных компетенций уровня «уметь» и «владеть».

Лабораторные работы включают задания по обработке количественных и качественных данных и решения исследовательских задач на их основе.

Поскольку задания являются обширными, непосредственно в аудитории преподавателем разбирается постановка задачи, обосновываются и демонстрируются инструменты необходимые для ее решения, уточняются требования к оформлению результатов.

Окончательное выполнение лабораторной работы происходит в форме самостоятельной домашней работы.

Выполненная домашняя работа сдается по расписанию следующей лабораторной работы в виде файла.

Работа проверяется преподавателем. Ошибки обсуждаются со студентом. Выставляется оценка.

Шкала оценивания уровня умений с помощью лабораторной работы

	Низкий, 0-30 баллов	Фрагмента рный, 31-59 баллов	Поверхност ный, 60-69 баллов	Достаточны й, 70-84 балла	Высокий, 85-100 баллов	оценка	вес
Решение поставленной задачи	Задача решена неверно, ход решения ошибочен, есть грубые ошибки	Задача решена неверно, ход решения верен, есть грубые ошибки	Задача решена неверно, ход решения верен, есть не более 5 мелких ошибок, оказавших воздействие на ответ	Задача решена верно, есть не более 4 мелких ошибок.	Задача решена верно, есть не более 2 мелких ошибок	X1	0,6
Оформление результатов	Не выдержаны требования к оформлени ю	Большая часть требований не выполнена	Есть не более 5 мелких ошибок в оформлении	Есть не более 4 мелких ошибок в оформлении	Есть не более 2 мелких ошибок в оформлении	X2	0,3

Своевременно	Не своевременно,	Своевременно, 100 баллов	X3	0,1
сть сдачи	0 баллов			
Итоговая		0,6*X1+0.3*X2+0.1*X3		
оценка				

Тесты

Тест – инструмент обязательного объективного контроля знаний студентов, обучающихся по дисциплинам, обеспечиваемых кафедрой ЭММ.

Целью тестирования является экспресс-оценка уровня знаний на основе использования стандартизованных вопросов или задач с ответами закрытого типа.

Тест служит для оценки освоения общепрофессиональных и профессиональных компетенций уровня «знать» и «уметь».

Преподаватель определяет количество вопросов для тестирования и время прохождения теста.

Тестирование проводится в системах ЭММ-тест, MyTest, Iren test.

Алгоритм оценивания теста

- 1. Определяется количество вопросов в тесте -N;
- 2. Рассчитывается вес вопроса 100/N баллов;
- 3. Определяется общее количество баллов, полученных за тест 100/N*K, где K- количество верных ответов.

Шкала оценивания уровня знаний с помощью теста

Низкий,	Фрагментарный,	Поверхностный,	Достаточный,	Высокий,
0-30 баллов	31-59 баллов	60-69 баллов	70-84 балла	85-100 баллов

Приложение 5

Технологическая карта дисциплины Количественные методы в прикладной экономике

Название модулей дисциплины согласно РПД	Контроль	Форма контроля		зачетный максимум	1 1			
Модуль 1								
	Текущий контроль	Домашние задания	2	5				
Математическая постановка общей задачи принятия решений в экономических системах	Рубежный контроль	Тест	3	5				
Мод	цуль 2							
	Текущий контроль	Домашние задания	2	5				
Математические методы решения задач оптимального управления	Рубежный контроль	Тест	3	5				
Модуль 3								
Meta wy wyayty dywayy y akaya wy akaya wy akataw na pany w tataw	Текущий контроль	Лабораторные работы	6	10				
Методы идентификации экономических систем по результатам наблюдений	Рубежный контроль	Тест	3	5				
Мод	уль 4							
	Текущий контроль	Лабораторные работы	6	10				
Метод динамического программирования Беллмана	Рубежный контроль	Тест	3	5				
Мод	уль 5							
Management	Текущий контроль	Лабораторные работы	6	10				
Методы имитационного моделирования динамических экономических систем	Рубежный контроль	Тест	6	10				
ВСЕГО за семестр	40	70						
Промежуточный контроль (Экзамен)	20	30						
Семестровый рейтинг по дисциплине	60	100						

Вес работ по дисциплине Количественные методы в прикладной экономике

Содержание дисциплины	Тип контроля	Форма контроля	Уровень освоения компетенции	Количество единиц	Максимальный балл за контрольную единицу/за весь контроль	Bec	зачетный максимум	
			Модуль 1					
Математическая постановка общей задачи	Текущий контроль	Домашние задания	Уметь, владеть	1	100	0.05	5	
принятия решений в экономических системах	Рубежный контроль	Тест	Знать, владеть	20	5/100	0.05	5	
			Модуль 2					
Математические методы решения задач	Текущий контроль	Домашние задания	Уметь, владеть	1	100	0.05	5	
оптимального управления	Рубежный контроль	Тест	Знать, владеть	20	5/100	0.05	5	
			Модуль 3					
Методы идентификации экономических систем	Текущий контроль	Лабораторные работы	Уметь, владеть	1	100/100	0.1	10	
по результатам наблюдений	Рубежный контроль	Тест	Знать, владеть	20	5/100	0.05	5	
			Модуль 4					
Метод динамического программирования Беллмана	Текущий контроль	Лабораторные работы	Уметь, владеть	1	100/100	0.1	10	
	Рубежный контроль	Тест	Знать, владеть	20	5/100	0.05	5	
Модуль 5								
Методы имитационного моделирования	Текущий контроль	Лабораторные работы	Уметь, владеть	1	100/100	0.1	10	
динамических экономических систем	Рубежный контроль	Тест	Знать, владеть	20	5/100	0.1	10	
	Итог							

Промежуточный контроль (Экзамен)	Знать, владеть				30
Семестровый рейтинг по дисциплине					

Методические указания по освоению дисциплины

Количественные методы в прикладной экономике

Курс предполагает как аудиторную (лекции и лабораторные занятия), так и самостоятельную работу студентов.

Самостоятельная работа студентов является обязательным компонентом процесса подготовки бакалавров, она формирует самостоятельность, познавательную активность студентов, вырабатывает практические навыки работы с литературой. Задания самостоятельной работы студентов выполняются вне аудитории без участия преподавателя. Основная задача самостоятельной работы подготовка к практическим занятиям. На практические занятие выносятся основные вопросы темы. Для подготовки к лабораторным занятиям необходимо на основе лекций, основной и дополнительной литературы подготовить дополнительные материалы, раскрывающие особенности решений поставленной проблемы..

Лабораторные занятия, как ведущий вид учебных занятий, составляют базу подготовки бакалавров. Они имеют целью научить студентов использовать методологию и методы оптимального управления для аналитической работы в сложных экономических и организационных системах.

Для выполнения заданий на лабораторных занятиях, необходимо сначала проработать теоретический материал, а только потом приступить к выполнению задания. На практических занятиях студенты получают навыки работы по применению математических методов оптимального управления, применяемых в теории и практике аналитической работы специалистов данного направления.

Для облегчения подготовки к лабораторным занятиям предлагается рекомендуемая литература из основного и дополнительного списков, указанных в рабочей программе и соответствующая изучаемым разделам, а также ссылки на Интернет-ресурсы.